Đề tuyển sinh lớp 10 môn Toán (chuyên) năm 2024 - 2025 sở GD&ĐT Hà Nội
Đề thi tuyển sinh lớp 10 môn Toán (chuyên) năm 2024 - 2025 sở GD&ĐT Hà Nội
MeToan.Com giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề chính thức kỳ thi tuyển sinh vào lớp 10 THPT môn Toán (chuyên Toán và chuyên Tin học) năm học 2024 – 2025 sở Giáo dục và Đào tạo thành phố Hà Nội; kỳ thi được diễn ra vào ngày 10 tháng 06 năm 2024.
Trích dẫn Đề tuyển sinh lớp 10 môn Toán (chuyên) năm 2024 – 2025 sở GD&ĐT Hà Nội:
- Bài 1: Cho hình vuông ABCD nội tiếp đường tròn (O), điểm M nằm giữa hai điểm B và C. Hai đường thẳng AM và DC cắt nhau tại P. Hai đường thẳng DM và AB cắt nhau tại K.
- Chứng minh tam giác BCK đồng dạng với tam giác CPB.
- Hai đường thẳng BP và CK cắt nhau tại H. Tiếp tuyến tại B của đường tròn (O) cắt đường thẳng MH tại R. Chứng minh tam giác BRK là tam giác vuông cân.
- Các đường thẳng vuông góc với OH kẻ từ O và H, cắt đường thẳng AB lần lượt tại X và Y. Lấy điểm Q thuộc tia đối của tia BC sao cho BQ = CM. Chứng minh hai đường thẳng QR, DK cắt nhau tại một điểm thuộc đường tròn ngoại tiếp tam giác MXY.
- Bài 2: Cho bảng ô vuông kích thước 6 x 6. Ở bước đầu tiên, bạn Đan tô đỏ k ô vuông bất kỳ của bảng. Sau đó, ở mỗi bước tiếp theo bạn Đan tô đỏ các ô vuông kề với ít nhất hai ô đã được tô đỏ (hai ô vuông được gọi là kề nhau nếu chúng có cạnh chung).
- Chỉ ra một cách tô đỏ 23 ô của bảng ở bước đầu tiên sao cho dù sau bao nhiêu bước, bạn Đan cũng không thể tô đỏ được tất cả các ô của bảng.
- Tìm giá trị nhỏ nhất của k để tồn tại một cách tô đỏ k ô vuông ban đầu sao cho sau một số hữu hạn bước, bạn Đan tô đỏ được tất cả các ô vuông của bảng.
Xem trước file PDF (400.3KB)
Share: