Đề Toán tuyển sinh lớp 10 năm 2019 trường chuyên KHTN – Hà Nội (Vòng 2)
MeToan.Com giới thiệu đến quý thầy, cô giáo và các em học sinh đề Toán tuyển sinh lớp 10 năm 2019 trường chuyên KHTN – Hà Nội (Vòng 2), đề được dành cho các thí sinh dự thi vào các lớp 10 chuyên Toán – Tin. Đề thi gồm 1 trang với 4 bài toán, thời gian học sinh làm bài là 90 phút.
Trích dẫn đề Toán tuyển sinh lớp 10 năm 2019 trường chuyên KHTN – Hà Nội (Vòng 2):
Bài 1: Với x, y là các số thực dương thỏa mãn điều kiện 4x^2 + 4y^2 + 17xy + 5x + 5y ≥ 1, tìm giá trị nhỏ nhất của biểu thức: P = 17x^2 + 17y^2 + 16xy.
Bài 2: Cho tam giác ABC cân tại A, có đường tròn nội tiếp (I). Các điểm E, F theo thứ tự thuộc các cạnh CA, AB (E khác C và A; F khác B và A) sao cho EF tiếp xúc với đường tròn (I) tại điểm P. Gọi K, L lần lượt là hình chiếu vuông góc của E, F lên BC. Giả sử FK cắt EL tại điểm J. Gọi H là hình chiếu vuông góc của J lên BC.
- Chứng minh rằng HJ là phân giác của EHF.
- Ký hiệu S1 và S2 lần lượt là diện tích của các tứ giác BFJL và CEJK. Chứng minh rằng: S1/S2 = BF^2/CE^2.
- Gọi D là trung điểm của cạnh BC. Chứng minh rằng ba điểm P, J, D thẳng hàng.
Bài 3: Cho M là tập tất cả 4039 Số nguyên liên tiếp từ -2019 đến 2019. Chứng minh rằng trong 2021 số đôi một phân biệt được chọn bất kì từ tập M luôn tồn tại 3 số đôi một phân biệt có tổng bằng 0..