Đề thi tuyển sinh lớp 10 THPT chuyên Toán năm 2020 - 2021 Sở GD&ĐT Hải Phòng
Đề thi tuyển sinh vào lớp 10 THPT chuyên Toán năm học 2020 - 2021 của Sở GD&ĐT Hải Phòng gồm 01 trang với 05 bài toán dạng tự luận. Thời gian làm bài thi là 150 phút. Đề thi có lời giải chi tiết và hướng dẫn chấm điểm.
Dưới đây là trích dẫn một số bài toán trong đề thi:
Bài 1: Cho tam giác ABC vuông tại A (AB < AC), M là trung điểm cạnh BC. P là một điểm di động trên đoạn AM (P khác A và M). Đường tròn đi qua P, tiếp xúc với đường thẳng AB tại A, cắt đường thẳng BP tại K (K khác P). Đường tròn đi qua P, tiếp xúc với đường thẳng AC tại A, cắt đường thẳng CP tại L (L khác P). a) Chứng minh BP.BK + CP.CL = BC^2. b) Chứng minh đường tròn ngoại tiếp tam giác PKC luôn đi qua hai điểm cố định. c) Gọi J là tâm của đường tròn ngoại tiếp tam giác PKC và E là giao điểm thứ hai của đường tròn này với đường thẳng AC. Gọi I là tâm của đường tròn ngoại tiếp tam giác PLB và F là giao điểm thứ hai của đường tròn này với đường thẳng AB. Chứng minh EF // IJ.
Bài 2: Giả sử rằng A là tập hợp con của tập hợp {1; 2; 3; …; 1023} sao cho A không chứa hai số nào mà số này gấp đôi số kia. Hỏi A có thể có nhiều nhất bao nhiêu phần tử?
Bài 3: Cho phương trình ẩn x là x^2 – px + q = 0 (với p; q là các số nguyên tố). Tìm tất cả các giá trị của p và q biết phương trình trên có nghiệm là các số nguyên dương.