Đề thi tuyển sinh lớp 10 môn Toán năm 2023 - 2024 sở GD&ĐT Hà Nam

MeToan.Com giới thiệu đến quý thầy, cô giáo và các em học sinh đề chính thức kỳ thi tuyển sinh vào lớp 10 THPT môn Toán năm học 2023 – 2024 sở Giáo dục và Đào tạo UBND tỉnh Hà Nam.

Trích dẫn Đề tuyển sinh lớp 10 môn Toán năm 2023 – 2024 sở GD&ĐT Hà Nam:

  • Trong mặt phẳng tọa độ Oxy, cho parabol (P) có phương trình y = x2 và đường thẳng (d) có phương trình y = 2mx – m2 – m − 2 (với m là tham số).
    1. Tìm tọa độ điểm M thuộc (P) biết điểm M có hoành độ bằng –3.
    2. Tìm điều kiện của m để đường thẳng (d) cắt parabol (P) tại hai điểm phân biệt. Gọi A(x1;y1), B(x2;y2) là hai giao điểm của đường thẳng (d) và parabol (P), xác định m để x1y2 + x2y1 = 2m3 + 6.
  • Trong tháng 4 năm 2023, hai hộ gia đình bác An và bác Bình dùng hết tổng cộng 500 nghìn đồng tiền điện. Sang tháng 5 năm 2023, do tăng cường thực hiện việc sử dụng điện an toàn, tiết kiệm và hiệu quả; nhà bác An giảm được 15% tiền điện và nhà bác Bình giảm được 10% tiền điện; kết quả là cả hai hộ gia đình tiết kiệm được tổng cộng 65 nghìn đồng tiền điện so với tháng 4 năm 2023. Hỏi trong tháng 4 năm 2023, mỗi hộ gia đình dùng hết bao nhiêu đồng tiền điện?
  • Cho đường tròn (O;R) và một điểm S nằm bên ngoài đường tròn. Kẻ các tiếp tuyến SA, SB với đường tròn (A, B là các tiếp điểm). Một dường thẳng đi qua S (không đi qua tâm O) cắt đường tròn (O;R) tại hai điểm M và N với M nằm giữa S và N.
    1. Chứng minh tứ giác SAOB nội tiếp.
    2. Chứng minh SB2 = SM.SN.
    3. Cho SO = R√5 và MN = R√2. Gọi E là trung điểm MN. Tính độ dài đoạn thẳng OE và diện tích tam giác SOM theo R.
    4. Tiếp tuyến tại M của đường tròn (O;R) cắt SA, SB lần lượt tại P, Q. Gọi giao điểm của OQ, OP với AB lần lượt là I và H. Chứng minh ba đường thẳng OM, QH, PI đồng quy.
Xem trước file PDF (529KB)

Share:

Thi Vào Lớp 10 - Mới Nhất