Đề thi tuyển sinh lớp 10 môn Toán năm 2020 trường THPT chuyên KHTN Hà Nội (vòng 2)
Đề thi tuyển sinh lớp 10 môn Toán chuyên KHTN Hà Nội năm 2020 (Vòng 2)
Sáng thứ Hai, ngày 13 tháng 07 năm 2020, trường THPT chuyên Khoa học Tự nhiên, Đại học Khoa học Tự nhiên, Đại học Quốc gia Hà Nội đã tổ chức kỳ thi tuyển sinh vào lớp 10 môn Toán năm học 2020 – 2021.
Đề thi được thiết kế dành riêng cho thí sinh thi vào các lớp chuyên Toán, với hình thức tự luận gồm 04 bài toán trên 01 trang giấy. Thí sinh có 150 phút để hoàn thành bài thi.
Trích dẫn một số bài toán trong đề thi:
Bài toán số học: Tìm tất cả các số nguyên dương a, b, c sao cho cả ba số 4a^2 + 5b, 4b^2 + 5c, 4c^2 + 5a đều là bình phương của số nguyên dương.
Bài toán dãy số: Từ một bộ bốn số thực (a, b, c, d) ta xây dựng bộ số mới (a + b, b + c, c + d, d + a) và liên tiếp xây dựng các bộ số mới theo quy tắc trên. Chứng minh rằng nếu ở hai thời điểm khác nhau ta thu được cùng một bộ số (có thể khác thứ tự) thì bộ số ban đầu phải có dạng (a, -a, a, -a).
Bài toán hình học: Cho tam giác ABC cân tại A với góc BAC < 90 độ. Điểm E thuộc cạnh AC sao cho góc AEB > 90 độ. Gọi P là giao điểm của BE với trung trực BC. Gọi K là hình chiếu vuông góc của P lên AB. Gọi Q là hình chiếu vuông góc của E lên AP. Gọi giao điểm của EQ và PK là F.
- Chứng minh rằng bốn điểm A, E, P, F cùng thuộc một đường tròn.
- Gọi giao điểm của KQ và PE là L. Chứng minh rằng LA vuông góc với LE.
- Gọi giao điểm của FL và AB là S. Gọi giao điểm của KE và AL là T. Lấy R là điểm đối xứng của A qua L. Chứng minh rằng đường tròn ngoại tiếp tam giác AST và đường tròn ngoại tiếp tam giác BPR tiếp xúc với nhau.