Phương Pháp Tính Khoảng Cách Giữa Hai Đường Thẳng Chéo Nhau Nhờ Kĩ Thuật Dựng Song Song Giữa Đường Thẳng Và Mặt Phẳng
Tài liệu gồm 13 trang, được biên soạn bởi tác giả Hoàng Xuân Bính (giáo viên Toán trường THPT chuyên Biên Hòa, Hà Nam), hướng dẫn phương pháp tính khoảng cách giữa hai đường thẳng chéo nhau nhờ kĩ thuật dựng song song giữa đường thẳng và mặt phẳng.
Trong bài toán thuộc chủ đề khoảng cách thì ta thấy thường xuất hiện bài toán tính khoảng cách giữa hai đường thẳng chéo nhau. Do đó, tài liệu này được viết để giúp các thầy cô và các em học sinh có một hướng tiếp cận khi giải quyết bài toán này.
I. Kiến thức cơ bản cần nhớ
(Nội dung phần này được trình bày trong tài liệu) II. Nội dung chuyên đề
Để giúp học sinh và các thầy cô có một cách tiếp cận về loại bài tập này, tài liệu trình bày: Phương pháp tính khoảng cách giữa hai đường thẳng chéo nhau nhờ kĩ thuật dựng song song giữa đường với mặt.
a) Phương pháp: Để tính khoảng cách giữa hai đường thẳng chéo nhau trong chuyên đề này, chúng ta sử dụng phương pháp đường song song với mặt: Cho a, b là hai đường thẳng chéo nhau thì ta luôn có: d(a;b) = d(a;(P)) với b ⊂ P và a // (P).
b) Các tính chất hình học phẳng thường được sử dụng:
– Loại 1: Khai thác tính chất hình bình hành (hoặc trong các hình hình thoi, hình chữ nhật, hình vuông): Trong một hình bình hành thì hai cặp cạnh đối diện luôn song song với nhau.
– Loại 2: Khai thác tính chất đường trung bình của tam giác.
Chú ý:
- Để khai thác tính chất đường trung bình trong tam giác, ta chú ý tới các yếu tố trung điểm có sẵn trong đề bài từ đó xây dựng thêm một trung điểm mới để thiết lập đường trung bình từ đó xác định được yếu tố song song mà ta sẽ chuyển đổi được khoảng cách giữa đường với đường về đường với mặt.
- Với bài toán có liên quan tới bài toán về hình hộp hoặc lăng trụ tam giác thì ta chú ý một tính chất quen thuộc của lăng trụ là: tâm của các mặt bên cũng chính là trung điểm của hai đường chéo của mặt bên đó.
III. Bài tập minh họa
Trong chuyên đề này, tài liệu chia các bài toán áp dụng được phương pháp này thành 2 dạng: - Dạng 1. Các bài toán tính khoảng cách giữa hai đường thẳng chéo nhau trong các bài toán về hình chóp.
- Dạng 2: Các bài toán tính khoảng cách giữa hai đường thẳng chéo nhau trong các bài toán về lăng trụ.
(Nội dung phần này được trình bày trong tài liệu) IV. Bài tập tự luyện (Nội dung phần này được trình bày trong tài liệu)