Bài Tập Thể Tích Khối Chóp Có Một Cạnh Bên Vuông Góc Với Đáy
Khối chóp có một cạnh bên vuông góc với đáy là dạng giả thiết được sử dụng rất nhiều trong các bài toán tính thể tích khối chóp. Nhờ vào giả thiết này, chúng ta có thể xác định ngay đường cao của khối chóp. Đồng thời, dựa vào định lý Py-ta-go, các hệ thức lượng trong tam giác vuông … sẽ tính được các yếu tố khác của khối chóp.
Để giúp các em học sinh rèn luyện giải toán liên quan đến dạng hình này, MeToan.Com giới thiệu đề bài và lời giải chi tiết 97 bài tập thể tích khối chóp có một cạnh bên vuông góc với đáy, với nhiều biến dạng và độ khó khác nhau, đây là các dạng bài thường gặp trong chương trình Hình học 12 và trong các đề thi THPT Quốc gia môn Toán.
\[ads\]
Dưới đây là một số bài toán trong tài liệu bài tập thể tích khối chóp có một cạnh bên vuông góc với đáy:
+ Cho hình chóp S.ABCD có đáy ABCD là hình vuông cạnh bằng a. Cạnh SA vuông góc với đáy và SA = y. Trên cạnh AD lấy điểm M sao cho AM = x. Biết rằng x^2 + y^2 = a^2. Tìm giá trị lớn nhất của thể tích khối chóp S.ABCM.
+ Cho hình chóp S.ABCD có SA vuông góc với mặt phẳng đáy (ABCD), đáy ABCD là hình thang vuông tại A và B có AB = a, AD = 3a, BC = a. Biết SA = a√3, tính thể tích khối chóp S.BCD theo a.
+ Cho khối tứ diện OABC với OA, OB, OC vuông góc từng đôi một và OA = a, OB = 2a, OC = 3a. Gọi M, N lần lượt là trung điểm của hai cạnh AC, BC. Thể tích của khối tứ diện OCMN tính theo a bằng?
+ Cho khối chóp S.ABC có đáy ABC là tam giác vuông cân có cạnh huyền BC = a và SA vuông góc với mặt phẳng đáy. Biết góc giữa mặt phẳng (SBC) và mặt phẳng (ABC) bằng 45°. Thể tích của hình chóp S.ABC là?
+ Đáy của hình chóp S.ABCD là một hình vuông cạnh a. Cạnh bên SA vuông góc với mặt phẳng đáy và có độ dài là a. Thể tích khối tứ diện S.BCD bằng?