Đề thi chọn đội tuyển HSG Toán 12 THPT năm 2020 - 2021 Sở GD&ĐT Hà Nội
Sở Giáo dục và Đào tạo thành phố Hà Nội vừa qua đã tổ chức kỳ thi chọn đội tuyển học sinh giỏi cấp thành phố môn Toán lớp 12 THPT năm học 2020 - 2021. Kỳ thi diễn ra trong hai ngày 19/10/2020 và 20/10/2020.
Dưới đây là trích dẫn đề thi chọn đội tuyển HSG Toán 12 THPT năm 2020 - 2021 của Sở GD&ĐT Hà Nội:
Bài 1: Cho tam giác ABC nhọn (AB < AC) nội tiếp đường tròn (O). Các đường cao AD, BE và CF của tam giác ABC đồng quy tại điểm H. Đường thẳng EF cắt đường thẳng BC tại điểm S. Qua S kẻ các tiếp tuyến SX, SY tới đường tròn (O), với X, Y là các tiếp điểm.
a) Chứng minh D, X và Y là ba điểm thẳng hàng.
b) Gọi I là giao điểm của hai đường thẳng XY và EF. Chứng minh đường thẳng IH đi qua trung điểm của đoạn thẳng BC.
Bài 2: Cho tam giác ABC cân tại A (góc BAC < 90°) và M là trung điểm của đoạn thẳng AB. Lấy điểm N thuộc đoạn thẳng CM sao cho CBN = ACM.
a) Chứng minh đường tròn ngoại tiếp tam giác BCN tiếp xúc với đường tròn ngoại tiếp tam giác AMN.
b) Đoạn thẳng AC cắt đường tròn ngoại tiếp tam giác AMN tại điểm thứ hai P. Gọi I là trung điểm của đoạn thẳng BC. Chứng minh đường thẳng NP đi qua trung điểm của đoạn thẳng MI.