Đề chọn đội tuyển dự thi HSG Quốc gia 2021 môn Toán sở GD&ĐT Đồng Tháp

Đề thi chọn đội tuyển dự thi Học sinh giỏi Quốc gia môn Toán năm 2021 của Sở GD&ĐT Đồng Tháp

Vào ngày 28 tháng 07 năm 2020, Sở Giáo dục và Đào tạo tỉnh Đồng Tháp đã tổ chức kỳ thi chọn đội tuyển học sinh giỏi môn Toán tham dự kỳ thi cấp Quốc gia năm 2021.

Đề thi tuyển chọn bao gồm 02 trang với 05 bài toán dạng tự luận, thời gian làm bài là 180 phút (không kể thời gian phát đề).

Dưới đây là một số trích dẫn từ đề thi:

  • Bài toán số học: Xét số T = 3^n – 2^n, trong đó n là số nguyên dương, n >= 2.
    • Chứng minh rằng:
      a) Không tồn tại n để T là bình phương của một số nguyên tố.
      b) Nếu T là lập phương của một số nguyên tố thì n là một số nguyên tố.
  • Bài toán đại số: Với mỗi m thuộc N* ta kí hiệu: a(2m) = (m!)^2, a(2m + 1) = (m!).((m + 1)!). Cho đa thức p(x) hệ số nguyên, có bậc lớn hơn hoặc bằng k (k thuộc N*) và có ít nhất k nghiệm nguyên phân biệt. Xét số nguyên n (n khác 0) sao cho đa thức q(x) = p(x) – n có ít nhất một nghiệm nguyên. Chứng minh rằng |n| >= a(k).
  • Bài toán hình học: Cho tam giác ABC, đường tròn nội tiếp (I) tiếp xúc với các cạnh BC, CA, AB tại D, E, F.
    1. Gọi S là giao điểm của EF với BC. Chứng minh SI vuông góc với AD.
    2. Đường thẳng d thay đổi, đi qua S và cắt đường tròn (I) tại hai điểm phân biệt M, N. Các tiếp tuyến tại M, N của (I) cắt nhau tại T. Chứng minh T thuộc một đường thẳng cố định.
    3. Gọi K là giao điểm của ME và NF, G là giao điểm của MC và NB. Chứng minh K và G cùng thuộc đường thẳng AD.
Xem trước file PDF (241.5KB)

Share:

Toán 12 - Mới Nhất