Phương Pháp Biến Đổi Đồ Thị Hàm Số - Lê Bá Bảo
Khám Phá Các Dạng Toán Biến Đổi Đồ Thị Hàm Số
Tài liệu 24 trang của tác giả Lê Bá Bảo cung cấp cho bạn đọc cái nhìn chi tiết về các dạng toán biến đổi đồ thị hàm số thường gặp, bao gồm:
1. Đối xứng qua trục tung:
- Từ đồ thị (C): y = f(x) suy ra đồ thị (C’): y = f(-x)
2. Đối xứng qua trục hoành:
- Từ đồ thị (C): y = f(x) suy ra đồ thị (C’): y = -f(x)
3. Vẽ đồ thị hàm số chứa dấu giá trị tuyệt đối của biến x:
- Từ đồ thị (C): y = f(x) suy ra đồ thị (C’): y = f(|x|)
4. Vẽ đồ thị hàm số chứa dấu giá trị tuyệt đối của hàm số:
- Từ đồ thị (C): y = f(x) suy ra đồ thị (C’): y = |f(x)|
5. Vẽ đồ thị hàm số là tích các hàm số có chứa dấu giá trị tuyệt đối:
- Từ đồ thị (C): y = u(x).v(x) suy ra đồ thị (C’): y = |u(x)|.v(x)
6. Tịnh tiến đồ thị song song với trục tung:
- Từ đồ thị (C): y = f(x) suy ra đồ thị (C’): y = f(x) + a
7. Tịnh tiến đồ thị song song với trục hoành:
- Từ đồ thị (C): y = f(x) suy ra đồ thị (C’): y = f(x + a).
Tài liệu này sẽ là tài liệu hữu ích cho các bạn học sinh, sinh viên đang học tập và ôn luyện về chương trình Đại số lớp 10 nói riêng và kiến thức Toán học nói chung.
Xem trước file PDF (1023.1KB)
Share: