Hệ thống bài tập trắc nghiệm vận dụng cao, phân loại hàm số mũ, logarit - Ôn thi THPT Quốc Gia

Tài liệu 21 trang được biên soạn bởi thầy giáo Lương Tuấn Đức (Giang Sơn), tuyển tập hệ thống bài tập trắc nghiệm vận dụng cao, phân loại hàm số mũ, hàm số logarit thuộc chương trình Toán 12 (Giải tích 12). Tài liệu này dành cho học sinh khá, giỏi, ôn tập chuẩn bị cho kỳ thi THPT Quốc gia môn Toán.

Trích dẫn nội dung:

Dưới đây là một số dạng bài tập có trong tài liệu:

Dạng 1: Giải phương trình mũ, logarit:

  • Phương trình 4^(x^2 – 3x + 2) + 4^(x^2 + 6x + 5) = 4^(2x^2 + 3x + 7) + 1 có bốn nghiệm phân biệt a, b, c, d theo thứ tự tăng dần. Tính giá trị biểu thức a + 2b + 3c + 4d.
  • Giả sử a, b là các số thực sao cho x^3 + y^3 = a.10^3z + b.10^2z đúng với mọi số thực dương x, y, z thỏa mãn điều kiện log(x + y) = z; log(x^2 + y^2) = z + 1. Giá trị của a + b là?

Dạng 2: Bài toán kết hợp đồ thị và hàm số mũ, logarit

  • Cho các số thực dương a, b khác 1. Biết rằng bất kỳ đường thẳng nào song song với trục hoành mà cắt các đường thẳng y = a^x; y = b^x, trục tung lần lượt tại M, N và A thì ta luôn có AN = 2AM (hình vẽ bên). Mệnh đề nào sau đây đúng ?
  • Cho hàm số y = loga x; y = logb x có đồ thị như hình vẽ bên. Đường thẳng x = 7 cắt trục hoành và các đồ thị hàm số y = loga x; y = logb x lần lượt tại H, M, N. Biết rằng 2HM = HN. Mệnh đề nào sau đây đúng?

Dạng 3: Bất phương trình mũ, logarit

  • Biết tập hợp tất cả các giá trị của tham số m để bất phương trình 4^ sin^2x + 5cos^2x ≤ m.7cos^2x có nghiệm là nửa khoảng [a/b;+vc) với a, b nguyên dương và phân số a/b tối giản. Tính giá trị của S = a + b.
Xem trước file PDF (1.2MB)

Share:

Toán 11 - Mới Nhất