Đề thi HSG huyện Toán 9 năm 2019 - 2020 phòng GD&ĐT Tân Kỳ - Nghệ An

Vào ngày … tháng 11 năm 2019, phòng Giáo dục và Đào tạo huyện Tân Kỳ, tỉnh Nghệ An đã tổ chức kỳ thi chọn học sinh giỏi cấp huyện môn Toán lớp 9 năm học 2019 - 2020. Kỳ thi được tổ chức nhằm mục đích động viên, khích lệ tinh thần học tập của học sinh, đồng thời tạo điều kiện để các em có năng khiếu Toán học được thể hiện năng lực, bồi dưỡng và phát triển tài năng. Kỳ thi cũng là cơ sở để lựa chọn và thành lập đội tuyển học sinh giỏi Toán 9 huyện Tân Kỳ, Nghệ An tham dự kỳ thi học sinh giỏi Toán 9 cấp tỉnh.

Đề thi HSG huyện Toán 9 năm 2019 - 2020 phòng GD&ĐT Tân Kỳ - Nghệ An được biên soạn theo hình thức tự luận với 05 bài toán, thời gian làm bài là 150 phút (không kể thời gian giám thị coi thi phát đề). Nội dung đề thi bám sát chương trình Toán lớp 9, đồng thời có tính phân loại cao, đòi hỏi học sinh phải nắm vững kiến thức cơ bản, vận dụng linh hoạt các phương pháp giải toán và có khả năng tư duy logic tốt.

Dưới đây là một số bài toán tiêu biểu trích dẫn từ đề thi:

  • Bài hình học: Cho tam giác ABC vuông tại A, đường cao AH, đường trung tuyến AM. Gọi D, E lần lượt là hình chiếu của H trên AB, AC.

    • a) Chứng minh: DE^2 = BH.HC
    • b) Chứng minh DE vuông góc với AM.
    • c) Giả sử diện tích tam giác ABC bằng hai lần diện tích tứ giác AEHD. Chứng minh tam giác ABC vuông cân.
  • Bài toán tính toán: Tính độ dài đường phân giác AD của tam giác ABC. Biết tam giác ABC có AB = 3cm, AC = 6cm, góc BAC = 120 độ.

  • Bài toán chứng minh:

    • Cho m^2 + 4 và m^2 + 16 là các số nguyên tố với m là số nguyên dương lớn hơn 1. Chứng minh rằng m chia hết cho 5.
    • Một sân hình vuông được chia 25 ô vuông nhỏ, mỗi ô được chia một học sinh đứng. Trống đánh, mỗi học sinh đều bước sang ô có cạnh chung với ô mình đang đứng. Chứng minh rằng khi đó phải có ít nhất một ô trống.
Xem trước file PDF (244.1KB)

Share:

Toán 9 - Mới Nhất