Đề thi học sinh giỏi Toán 9 năm 2021 - 2022 phòng GD&ĐT thành phố Ninh Bình
Đề thi học sinh giỏi Toán 9 năm 2021 - 2022 do phòng GD&ĐT thành phố Ninh Bình tổ chức gồm 01 trang với 05 bài toán dạng tự luận, thời gian làm bài 150 phút (không kể thời gian phát đề).
Dưới đây là một số bài toán tiêu biểu trong đề thi:
Bài 1: Cho đường tròn (O) và dây BC cố định (BC không phải là đường kính). Điểm A di động trên cung lớn BC sao cho tam giác ABC là tam giác nhọn. Gọi E là điểm đối xứng của B qua đường thẳng AC và F là điểm đối xứng của C qua đường thẳng AB. Gọi K là giao điểm của hai đường thẳng EC và FB, H là giao điểm của hai đường thẳng BE và CF.
a) Chứng minh FAHB và ACKF là các tứ giác nội tiếp. b) Chứng minh KA là phân giác của góc BKC và ba điểm K, O, A thẳng hàng. c) Xác định vị trí của điểm A sao cho tứ giác BKCO có diện tích lớn nhất.
Bài 2: Cho 16 số nguyên dương lớn hơn 1 và nhỏ hơn 2021 đôi một nguyên tố cùng nhau. Chứng minh trong 16 số trên có ít nhất một số là số nguyên tố.
Bài 3: Cho 8045 điểm trên một mặt phẳng sao cho cứ 3 điểm bất kì thì tạo thành một tam giác có diện tích nhỏ hơn 1. Chứng minh rằng luôn có thể có ít nhất 2012 điểm nằm trong tam giác hoặc trên cạnh của một tam giác có diện tích nhỏ hơn 1.
Đề thi học sinh giỏi Toán 9 năm 2021 - 2022 phòng GD&ĐT thành phố Ninh Bình được đánh giá là có tính phân loại cao, đòi hỏi học sinh phải có kiến thức vững vàng và khả năng vận dụng linh hoạt các kiến thức đã học để giải quyết các bài toán.