Đề thi học sinh giỏi Toán 9 năm 2020 - 2021 sở GD&ĐT thành phố Đà Nẵng
MeToan.Com giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề thi học sinh giỏi Toán 9 năm học 2020 – 2021 sở GD&ĐT thành phố Đà Nẵng.
Dưới đây là trích dẫn nội dung đề thi:
Bài 1: Một số tự nhiên có ba chữ số có tổng chữ số hàng trăm với chữ số hàng đơn vị bằng 9 và nếu đổi chỗ hai chữ số hàng trăm và hàng đơn vị cho nhau thì được số mới có ba chữ số nhỏ hơn số ban đầu là 99. Tìm số đã cho, biết rằng số đó chia hết cho 18.
Bài 2: Cho tam giác ABC nhọn có hai đường cao BD, CE cắt nhau tại H. Gọi F là hình chiếu vuông góc của H trên BC, M là tiếp điểm của EF với đường tròn nội tiếp tam giác DEF, I là giao điểm (khác F) của HF với đường tròn đường kính DF và N là giao điểm của IM với ED.
a) Chứng minh rằng ba điểm A, H, F thẳng hàng và BE.BA + CD.CA = BC².
b) Chứng minh rằng hai đường thẳng ED và HN vuông góc với nhau.
c) Cho góc BAC = 60° và bán kính đường tròn (O) ngoại tiếp tam giác ABC bằng R. Gọi K là điểm thay đổi trên cung nhỏ BC của đường tròn (O) và P, Q lần lượt là hình chiếu vuông góc của K trên AB và AC. Khi PQ lớn nhất, hãy tính diện tích của tam giác OPQ theo R.
Bài 3: Trong mặt phẳng tọa độ Oxy (O là gốc tọa độ), cho hình bình hành OABC có điểm A(3;5), điểm C thuộc đường thẳng y = -x và có hoành độ dương. Biết rằng diện tích của hình bình hành OABC bằng 24. Tìm tọa độ điểm B.