Đề cương Ôn tập Giữa học kì 1 Toán 11 năm 2025 – 2026 THPT Việt Đức, Hà Nội

Kỳ thi kiểm tra giữa học kì 1 là một cột mốc quan trọng, giúp học sinh lớp 11 hệ thống hóa lại những kiến thức nền tảng và là bước đệm vững chắc cho kỳ thi cuối kỳ. Để hỗ trợ các em học sinh trường THPT Việt Đức - Hà Nội có sự chuẩn bị tốt nhất, MeToan.Com xin chia sẻ nội dung ôn tập chi tiết cho môn Toán 11 năm học 2025 - 2026, bám sát chương trình học chính quy.
Nội dung trọng tâm phần Đại số: Hàm số lượng giác và Phương trình lượng giác
Đây là chương kiến thức cốt lõi và chiếm tỷ trọng lớn trong cấu trúc đề thi. Học sinh cần tập trung ôn luyện kỹ lưỡng các mảng kiến thức sau:
Giá trị và công thức lượng giác: Cần nắm vững khái niệm về góc và cung lượng giác, đường tròn lượng giác, cũng như giá trị sin, cos, tan, cot của các cung đặc biệt. Việc ghi nhớ và vận dụng thành thạo các công thức cộng, công thức nhân đôi, công thức hạ bậc, và các công thức biến đổi tổng thành tích, tích thành tổng là yêu cầu bắt buộc. Các công thức này là công cụ thiết yếu để giải quyết các bài toán rút gọn biểu thức và chứng minh đẳng thức lượng giác phức tạp.
Hàm số lượng giác: Ôn tập kỹ về tập xác định, tập giá trị, tính chẵn lẻ, chu kỳ tuần hoàn và cách vẽ đồ thị của bốn hàm số lượng giác cơ bản. Các dạng bài toán tìm giá trị lớn nhất, giá trị nhỏ nhất của hàm số dựa trên các tính chất và phép biến đổi đồ thị cũng là nội dung thường xuyên xuất hiện trong các bài kiểm tra.
Phương trình lượng giác: Nền tảng của chương này là giải thành thạo các phương trình lượng giác cơ bản. Từ đó, phát triển ra các dạng phương trình quen thuộc như phương trình bậc nhất, bậc hai đối với một hàm số lượng giác và phương trình bậc nhất đối với sinx và cosx (dạng a.sinx + b.cosx = c).
Nội dung trọng tâm phần Hình học: Quan hệ song song trong không gian
Chương đầu tiên của Hình học không gian lớp 11 đặt nền móng cho toàn bộ kiến thức về sau, đòi hỏi học sinh phải có tư duy trừu tượng và khả năng tưởng tượng hình tốt.
Đại cương về đường thẳng và mặt phẳng: Học sinh cần hiểu rõ các khái niệm cơ bản, các tiên đề, tính chất và các cách xác định một mặt phẳng. Bên cạnh đó, việc nhận biết và phân biệt vị trí tương đối giữa các đường thẳng (cắt nhau, song song, chéo nhau) và giữa đường thẳng với mặt phẳng (cắt, song song, nằm trong) là kiến thức nền tảng để giải quyết các bài toán phức tạp hơn.
Chứng minh quan hệ song song: Trọng tâm của chương là vận dụng các định nghĩa, định lý để chứng minh hai đường thẳng song song, đường thẳng song song với mặt phẳng. Các bài toán thường yêu cầu tìm giao tuyến của hai mặt phẳng và sử dụng các định lý về giao tuyến song song để chứng minh các mối quan hệ hình học trong các hình chóp, hình lăng trụ.