Chuyên Đề Phương Pháp Tọa Độ Trong Không Gian Lớp 12 - Nguyễn Hoàng Việt
Tài liệu gồm 120 trang, được biên soạn bởi thầy giáo Nguyễn Hoàng Việt, bao gồm lý thuyết, các dạng toán và bài tập chuyên đề phương pháp tọa độ trong không gian Oxyz, giúp học sinh lớp 12 tham khảo khi học chương trình Hình học 12 chương 3.
Chương 3. PHƯƠNG PHÁP TỌA ĐỘ TRONG KHÔNG GIAN
§1. HỆ TỌA ĐỘ TRONG KHÔNG GIAN
A. Tóm Tắt Lý Thuyết
B. Các Dạng Toán
- Dạng 1. Sự cùng phương của hai véc-tơ. Ba điểm thẳng hàng.
- Dạng 2. Tìm tọa độ điểm thỏa điều kiện cho trước.
- Dạng 3. Một số bài toán về tam giác.
§2. PHƯƠNG TRÌNH MẶT PHẲNG
A. Tóm Tắt Lý Thuyết
B. Các Dạng Toán
- Dạng 1. Sự đồng phẳng của ba vec-tơ, bốn điểm đồng phẳng.
- Dạng 2. Diện tích của tam giác.
- Dạng 3. Thể tích khối chóp.
- Dạng 4. Thể tích khối hộp.
- Dạng 5. Lập phương trình mặt phẳng đi qua một điểm và có vectơ pháp tuyến cho trước.
- Dạng 6. Lập phương trình mặt phẳng trung trực của đoạn thẳng.
- Dạng 7. Lập phương trình mặt phẳng đi qua một điểm và có cặp vectơ chỉ phương cho trước.
- Dạng 8. Lập phương trình mặt phẳng đi qua một điểm và song song mặt phẳng cho trước.
- Dạng 9. Lập phương trình mặt phẳng đi qua ba điểm phân biệt không thẳng hàng.
- Dạng 10. Lập phương trình mặt phẳng đi qua một điểm và vuông góc với đường thẳng đi qua hai điểm cho trước.
- Dạng 11. Lập phương trình mặt phẳng đi qua một điểm và vuông góc với hai mặt phẳng cắt nhau cho trước.
- Dạng 12. Lập phương trình mặt phẳng đi qua hai điểm và vuông góc với một mặt phẳng cắt nhau cho trước.
- Dạng 13. Lập phương trình mặt phẳng tiếp xúc với mặt cầu tại điểm cho trước.
- Dạng 14. Viết phương trình của mặt phẳng liên quan đến mặt cầu và khoảng cách.
- Dạng 15. Viết phương trình mặt phẳng liên quan đến góc hoặc liên quan đến tam giác.
- Dạng 16. Các dạng khác về viết phương trình mặt phẳng.
- Dạng 17. Vị trí tương đối của hai mặt phẳng.
- Dạng 18. Vị trí tương đối của mặt phẳng và mặt cầu.
- Dạng 19. Tính khoảng cách từ một điểm đến một mặt phẳng. Tìm hình chiếu của một điểm trên mặt phẳng. Tìm điểm đối xứng của một điểm qua mặt phẳng.
- Dạng 20. Tìm tọa độ hình chiếu của điểm trên mặt phẳng. Điểm đối xứng qua mặt phẳng.
§3. PHƯƠNG TRÌNH ĐƯỜNG THẲNG TRONG KHÔNG GIAN
A. Tóm Tắt Lý Thuyết
B. Các Dạng Toán
- Dạng 1. Viết phương trình đường thẳng khi biết một điểm thuộc nó và một véc-tơ chỉ phương.
- Dạng 2. Viết phương trình của đường thẳng đi qua hai điểm cho trước.
- Dạng 3. Viết phương trình đường thẳng đi qua điểm M cho trước và vuông góc với mặt phẳng (α) cho trước.
- Dạng 4. Viết phương trình đường thẳng đi qua điểm M và song song với một đường thẳng cho trước.
- Dạng 5. Đường thẳng d đi qua điểm M và song song với hai mặt phẳng cắt nhau (P) và (Q).
- Dạng 6. Đường thẳng d qua M song song với mp(P) và vuông góc với d0 (d0 không vuông góc với ∆).
- Dạng 7. Viết phương trình đường thẳng d đi qua điểm M và vuông góc với hai đường thẳng chéo nhau d1 và d2.
- Dạng 8. Viết phương trình đường thẳng đi qua điểm A đồng thời cắt cả hai đường thẳng d1 và d2.
- Dạng 9. Viết phương trình đường thẳng đi qua điểm A, vuông góc với đường thẳng d1 và cắt đường thẳng d2.
- Dạng 10. Viết phương trình đường thẳng d đi qua điểm A, vuông góc với đường thẳng d1 và cắt đường thẳng d1.
- Dạng 11. Viết phương trình đường thẳng d nằm trong mặt phẳng (P) đồng thời cắt cả hai đường thẳng d1 và d2.
- Dạng 12. Viết phương trình đường thẳng d song song với đường thẳng d0 đồng thời cắt cả hai đường thẳng d1 và d2.
- Dạng 13. Viết phương trình đường thẳng d song song và cách đều hai đường thẳng song song cho trước và nằm trong mặt phẳng chứa hai đường thẳng đó.
- Dạng 14. Viết phương trình đường thẳng d là đường vuông góc chung của hai đường thẳng chéo nhau cho trước.
- Dạng 15. Viết phương trình tham số của đường thẳng d0 là hình chiếu của đường thẳng d trên mặt phẳng (P).
§4. ĐỀ KIỂM TRA CHƯƠNG III
- Đề số 1a
- Đề số 1b
- Đề số 2a
- Đề số 2b
- Đề số 3a
- Đề số 3b
- Đề số 4a
- Đề số 4b
Xem trước file PDF (2.1MB)
Share: