Bí quyết chinh phục bài toán thực tế trong đề thi tuyển sinh lớp 10 THPT
Luyện thi vào 10 môn Toán: Hướng dẫn giải bài toán thực tế
Bạn đang ôn thi vào lớp 10 và lo lắng về dạng bài toán thực tế? Đừng lo, tài liệu 102 trang này sẽ là "bí kíp" giúp bạn tự tin chinh phục dạng bài này!
Được biên soạn bởi tác giả Toán Họa, tài liệu tập trung hướng dẫn phương pháp giải các bài toán thực tế, một dạng toán mới và thường xuất hiện trong đề thi tuyển sinh vào lớp 10 môn Toán những năm gần đây.
Tài liệu không chỉ trang bị kiến thức mà còn giúp học sinh khối THCS nhận thấy được ứng dụng thiết thực của toán học trong cuộc sống.
Nội dung chính của tài liệu:
Các dạng toán thường gặp:
- Dạng 1: Lãi suất ngân hàng
- Lãi đơn: Cách tính số tiền lãi chỉ dựa trên số tiền gốc, không tính trên số tiền lãi phát sinh.
- Lãi kép: Cách tính số tiền lãi dựa trên cả số tiền gốc và số tiền lãi đã được cộng dồn vào theo định kỳ.
- Dạng 2: Giải hệ phương trình - giải phương trình
- Hướng dẫn giải toán bằng cách lập phương trình, hệ phương trình bậc nhất hai ẩn.
- Phân tích các dạng bài tập, phương pháp giải, và cách áp dụng kiến thức đã học để tìm ra nghiệm.
- Hướng dẫn giải chi tiết các dạng toán về số, chuyển động, năng suất, và ứng dụng hình học.
- Dạng 3: Vận dụng kiến thức hình học
- Cách vận dụng định lý Pytago.
- Hướng dẫn sử dụng hệ thức giữa cạnh và đường cao trong tam giác vuông.
- Cách vận dụng hệ thức liên hệ giữa cạnh và góc trong tam giác vuông.
- Dạng 4: Vận dụng công thức Hóa - Lý
- Cách vận dụng công thức Vật lý: I = U/R (I là cường độ dòng điện, U là hiệu điện thế, R là điện trở).
- Hướng dẫn sử dụng công thức Hóa học: nồng độ phần trăm, nồng độ mol, khối lượng riêng của dung dịch, đổi đơn vị.
Bài tập phân dạng tự luyện:
- Dạng 1: Bài toán kinh tế, tăng trưởng, tăng dân số, lãi suất, tiền điện, tiền taxi.
- Dạng 2: Giải bài toán bằng cách lập phương trình dạng bậc nhất hoặc lập hệ phương trình.
- Dạng 3: Giải bài toán bằng cách lập hệ phương trình, lập phương trình.
Với tài liệu này, bạn sẽ được trang bị đầy đủ kiến thức và kỹ năng để tự tin giải quyết mọi bài toán thực tế trong đề thi tuyển sinh lớp 10 THPT!
Xem trước file PDF (2MB)
Share: