Đề thi HSG Toán 10 năm 2022 - 2023 Sở GD&ĐT Vĩnh Phúc
MeToan.Com giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 10 đề thi chọn học sinh giỏi (HSG) môn Toán 10 chương trình THPT năm học 2022 – 2023 sở Giáo dục và Đào tạo tỉnh Vĩnh Phúc; đề thi mã đề 111, gồm 06 trang với 50 câu trắc nghiệm, thời gian làm bài 90 phút (không kể thời gian phát đề).
Trích dẫn Đề thi học sinh giỏi Toán 10 THPT năm 2022 – 2023 sở GD&ĐT Vĩnh Phúc:
- Khi một quả bóng được đá lên từ độ cao 0 h, nó sẽ đạt đến độ cao nào đó rồi rơi xuống. Biết quỹ đạo chuyển động của quả bóng là một parabol và độ cao h của quả bóng được tính bởi công thức 2 0 0 2 h t at v t h trong đó độ cao h và độ cao ban đầu 0 h được tính bằng mét, t là thời gian chuyển động tính bằng giây, a là gia tốc chuyển động tính bằng 2 0 m s v là vận tốc ban đầu tính bằng m s . Biết rằng sau 0,5 giây quả bóng đạt được độ cao 6,075 m; sau 1 giây quả bóng đạt độ cao 8,5 m; sau 2 giây quả bóng đạt độ cao 6 m. Độ cao lớn nhất của quả bóng được đá lên so với mặt đất là (kết quả được làm tròn đến hàng phần chục).
- Trong một cuộc thi pha chế, mỗi đội chơi được sử dụng tối đa 24 gam hương liệu, 9 lít nước và 210 gam đường để pha chế nước ngọt loại I và nước ngọt loại II. Để pha chế 1 lít nước ngọt loại I cần 10 gam đường, 1 lít nước và 4 gam hương liệu. Để pha chế 1 lít nước ngọt loại II cần 30 gam đường, 1 lít nước và 1 gam hương liệu. Mỗi lít nước ngọt loại I được 80 điểm thưởng, mỗi lít nước ngọt loại II được 60 điểm thưởng. Hỏi số điểm thưởng cao nhất có thể của mỗi đội trong cuộc thi là bao nhiêu?
- Cho tam giác ABC có trọng tâm G. Gọi I là trung điểm của cạnh BC và M là điểm thỏa mãn: 2 3 MA MB MC MB MC . Khi đó, tập hợp các điểm M là A. đường trung trực của đoạn thẳng IG. B. đường trung trực của đoạn thẳng BC. C. đường tròn tâm I, bán kính BC. D. đường tròn tâm G, bán kính BC..
Xem trước file PDF (615KB)
Share: