Đề thi học kỳ 1 Toán 9 năm 2019 - 2020 phòng GD&ĐT Tân Bình - TP HCM
Ngày 13 tháng 12 năm 2019, phòng Giáo dục và Đào tạo quận Tân Bình, thành phố Hồ Chí Minh tổ chức kiểm tra chất lượng dạy và học môn Toán lớp 9 trong giai đoạn cuối học kỳ 1 năm học 2019 – 2020.
Đề thi học kỳ 1 Toán 9 năm 2019 – 2020 phòng GD&ĐT Tân Bình – TP HCM gồm có 07 bài toán tự luận, đề thi gồm 01 trang, thời gian học sinh làm bài thi HK1 Toán 9 là 90 phút (không tính thời gian giám thị coi thi phát đề).
Dưới đây là một số nội dung được trích dẫn từ đề thi:
- Cho hai hàm số: y = 2x – 3 (D1) và y = -1/2x + 2 (D2).
- Vẽ (D1) và (D2) trên cùng một mặt phẳng tọa độ.
- Tìm tọa độ giao điểm A của (D1) và (D2) bằng phép toán.
- Tìm m để đường thẳng y = (m – 2)x + m + 8 có đồ thị (D3) đi qua điểm A.
- Ở siêu thị có thang máy cuốn nhằm giúp khách hàng di chuyển từ tầng này của siêu thị lên tầng kế cận rất tiện lợi. Biết rằng thang cuốn này được thiết kế có độ nghiêng 36° so với phương ngang là góc BAH và tốc độ vận hành là 2m/s. Một khách hàng đã di chuyển bằng thang cuốn này từ tầng 1 lên tầng 2 của siêu thị theo hướng AB hết 8 giây. Hỏi khoảng cách giữa tầng 1 và tầng 2 của siêu thị (BH) cao bao nhiêu mét? (Kết quả làm tròn đến chữ số thập phân thứ 2).
- Tháng 11 vừa qua, có ngày Black Friday (thứ 6 đen – mua sắm siêu giảm giá). Phần lớn các trung tâm thương mại đều giảm giá rất nhiều mặt hàng. Mẹ bạn An có dẫn An đến một trung tâm thương mại để mua một bộ quần áo thể thao, Biết một bộ quần áo thể thao đang khuyến mãi giảm giá 40%, mẹ bạn An có thể khách hàng thân thiết của trung tâm thương mại nên được giảm thêm 5% trên giá đã giảm, mẹ bạn An chi phải trả 6480000 đồng cho một bộ quần áo thể thao. Hỏi giá ban đầu của một bộ quần áo thể thao nếu không khuyến mãi là bao nhiêu?
- Sân trường THCS A là một hình vuông, còn sân trường THCS B là một hình chữ nhật có chiều rộng 4,5m và chiều dài 18m. Biết rằng diện tích của hai sân trường bằng nhau. Hãy tính chu vi sân trường THCS A.
- Cho đường tròn (O) là đường tròn tâm O đường kính AB. Qua A vẽ tiếp tuyến Ax của (O), trên tia Ax lấy điểm M (M khác A), từ M vẽ tiếp tuyến MC của (O) (C là tiếp điểm). Gọi H là giao điểm của OM và AC. Đường thẳng MB cắt (O) tại D (D nằm giữa M và B).
- Chứng minh: OM vuông góc với AC tại H.
- Chứng minh: MD.MB = MH.MO và góc MHD = góc MBA.
- Gọi K là trung điểm đoạn thẳng BD. Tiếp tuyến tại B của (O) cắt tia OK tại E. Chứng minh: Ba điểm A, C, E thẳng hàng.
Xem trước file PDF (469.5KB)
Share: