Tài Liệu Dạy Thêm - Học Thêm Chuyên Đề Hình Có Tâm Đối Xứng Lớp 6

Tài liệu gồm 14 trang, tổng hợp tóm tắt lý thuyết, hướng dẫn phương pháp giải các dạng toán và bài tập chuyên đề hình có tâm đối xứng, hỗ trợ giáo viên và học sinh lớp 6 trong quá trình dạy thêm – học thêm môn Toán 6.

PHẦN I. TÓM TẮT LÍ THUYẾT.

PHẦN II. CÁC DẠNG BÀI.

Dạng 1. Kiểm tra hình có tâm đối xứng hay không?

Nói đến tâm của hình (ta hiểu là điểm nằm chính giữa hình). Để kiểm tra xem điểm đó có là tâm đối xứng của hình hay không thì ta lấy một điểm bất kỳ trên (hay trong) hình, lấy đối xứng qua tâm thì ta được một điểm:

  • Nếu điểm đó vẫn thuộc hình thì hình đó có tâm đối xứng.
  • Nếu điểm đó không thuộc hình thì hình đó không có tâm đối xứng.

Dạng 2. Tâm đối xứng của hình.

Đối với những hình có tâm đối xứng thì hình đó có số cạnh (viền ngoài) là chẵn, hoặc trong thiên nhiên hình ảnh của bông hoa có tâm đối xứng nằm ở giữa (nhị hay nhụy hoa), hình ảnh của cỏ bốn lá cũng có tâm đối xứng.

Đối với các hình có số cạnh bằng nhau (số cạnh chẵn) thì tâm đối xứng chính là giao của các đường chéo.

Dạng 3. Chữ có tâm đối xứng.

Để kiểm tra xem chữ có tâm đối xứng hay không thì trước tiên ta phải phán đoán tâm đối xứng của chữ (thường thì tâm của chữ nằm chính giữa chữ), sau đó lấy một điểm bất kỳ (thường lấy điểm ở vị trí đặc biệt) để kiểm tra. Nếu có một điểm khác đối xứng với điểm đã chọn mà vẫn thuộc chữ cái đó thì chữ cái đó có tâm đối xứng.

Dạng 4. Vẽ hình đối xứng qua một điểm.

Để vẽ điểm A’ đối xứng với điểm A qua O ta thực hiện như sau: Dựng đường tròn tâm O bán kính OA, đường tròn này cắt lại đường thẳng OA tại điểm A’ khác A. Khi đó điểm A’ là điểm đối xứng với điểm A qua O.

Để vẽ được 2 hình đối xứng với nhau qua 1 điểm O ta sẽ chọn một số điểm đặc biệt thuộc hình đó, lấy đối xứng qua O rồi nối các điểm đó lại để được hình mới đối xứng với hình đã cho qua tâm O.

Dạng 5. Tính độ dài, chu vi, diện tích của hình có tâm đối xứng.

Khi tính toán độ dài đoạn thẳng có tâm đối xứng, ta chú ý rằng tâm đối xứng là điểm chính giữa của đoạn thẳng hay trung điểm của đoạn thẳng đó.

Tức là khi O tâm đối xứng của đoạn AB thì O là trung điểm của đoạn thẳng AB nên: OA = OB = AB/2.

Một số hình phẳng có tâm đối xứng thường gặp: hình bình hành, hình vuông, hình chữ nhật, hình thoi, hình lục giác đều:

– Tâm đối xứng của hình bình hành, hình vuông, hình chữ nhật, hình thoi là giao điểm của hai đường chéo. – Tâm đối xứng của hình lục giác đều là giao điểm của các đường chéo chính.

Khi đó tâm đối xứng sẽ là trung điểm của mỗi đường chéo. Sau khi tính toán được độ dài các cạnh hoặc đường chéo ta sẽ vận dụng công thức tính chu vi, diện tích của các hình đã học trong chương IV để tính chu vi, diện tích các hình.

Xem trước file PDF (1.6MB)

Share:

Toán 6 - Mới Nhất