Căn thức bậc hai và hằng đẳng thức √A² = -A- - Toán 9
Tài liệu Toán 9: Căn thức bậc hai và hằng đẳng thức √A² = |A|
Tài liệu gồm 25 trang cung cấp đầy đủ kiến thức, các dạng bài tập và lời giải chi tiết về chủ đề căn thức bậc hai và hằng đẳng thức √A² = |A| trong chương trình Toán lớp 9, giúp học sinh nắm vững kiến thức và tự tin chinh phục các bài kiểm tra.
A. Tóm tắt lý thuyết
1. Căn thức bậc hai
a. Định nghĩa: Với A là một biểu thức đại số, căn bậc hai của A được kí hiệu là √A, trong đó A được gọi là biểu thức lấy căn hay biểu thức dưới dấu căn.
b. Điều kiện xác định (hay điều kiện có nghĩa): √A có nghĩa khi và chỉ khi A ≥ 0.
Ví dụ: √(3x) có nghĩa khi 3x ≥ 0 ⇔ x ≥ 0.
2. Hằng đẳng thức √A² = |A|
Hằng đẳng thức này được áp dụng để rút gọn biểu thức và giải các bài toán liên quan đến căn bậc hai.
Ví dụ 1: √12² = |12| = 12.
Ví dụ 2: Rút gọn biểu thức √(x - 2)² với x ≥ 2.
Vì x ≥ 2 nên x - 2 ≥ 0. Do đó, √(x - 2)² = |x - 2| = x - 2.
B. Bài tập và các dạng toán
Tài liệu bao gồm các dạng bài tập thường gặp với mức độ từ dễ đến khó, giúp học sinh rèn luyện kỹ năng và tư duy toán học:
- Dạng 1: Tìm điều kiện để biểu thức chứa căn có nghĩa.
- Dạng 2: Tính giá trị của biểu thức.
- Dạng 3: Rút gọn các biểu thức chứa biến.
- Dạng 4: Giải phương trình chứa căn.
- Dạng 5: Tìm giá trị lớn nhất (GTLN), giá trị nhỏ nhất (GTNN) của biểu thức.
C. Bài tập tự luyện
- Bài tập trắc nghiệm: Giúp học sinh ôn tập và củng cố kiến thức nhanh chóng.
- Bài tập về nhà: Các bài tập với nhiều mức độ khác nhau giúp học sinh rèn luyện kỹ năng giải toán và áp dụng kiến thức vào thực tế.
Tài liệu này là nguồn tài liệu hữu ích cho học sinh lớp 9, giúp các em nắm vững kiến thức về căn thức bậc hai và hằng đẳng thức √A² = |A|, từ đó tự tin chinh phục các bài toán và bài kiểm tra.